

Keyasic

Package Strategy, Package Design & Good Practice

March 2019
Moscow

Backend Services

Packaging Services

- Co-design & develop IC packaging with assembly partners

- Package qualification

- Improve on packaging & yield

Objective

Reduce Overall Cost

Enhance Performance

Manufacturability of Final Design

Time to Market

- Package Requirement
- Known Good Dies (KGDs)
- Application Specific IC's (ASICs)
- Advance in Substrate Technology
- Working Together

Package Requirement

• Thermal & Electrical Requirement

Real-Estate Constraint

• Cost

PW FE IP BE INTG VRFY TEST Cost PKG

I/O Count

I/O Count

Electrical & Thermal Enhancement

Capacitance Control Features

Thermal Vias

PKG

Heat Spreader

d via Surface finish Epoxy-fiberglass substrate

Heat Slugs

Heat-spreader

Solder Balls

Known Good Dies (KGDs)

- Easily converted to an array format
- Re-distribution layer (RDL)

Application Specific IC's (ASICs)

- Higher level of circuity
- Chip-to-substrate interconnect level
- Thermal management solution

Advance in Substrate Technology

- Need for more I/O's and smaller ball pitches
- Through & blind vias
- Plating tail & gold plating process

Working Together

 Utilization of standard tools and documentation

Packaging Flow

Traditional Design Flow

Early planning Power-Ground-I/O

Planning & Physical Synthesis

Si Closure Routing & Finishing

IC Flow

To Wafer Tape out

Netlist Constraints I/O Drivers Substrate Pattern & Routing Layout

Design Verification & Optimization

IC Packaging

To Substrate fabrication

PKG

Packaging Flow

Design Convergence (Co-Design) Flow

Packaging Flow

Design Convergence (Co-Design) Flow

Why packaging involvement at early planning?

E.g.

Competitor Price in Market USD2.00

Target to price compete in Market USD1.00

Unit Price Breakdown (est)

- Die 40%

- Assembly 30% (USD0.30)

Testing 10%Margin & GA 20%

- Find a package (type, lead/ball count) within this cost or lower
- Work with IC Design to work within this package (type, lead/ball count)

- Thermal Performance
- Electrical Performance
- Physical Consideration
- Package Connectivity
- Manufacturing Consideration

Preliminary Information (Estimation)

- Die Size
- I/O Count (chip & package)
- Thermal Dissipation & Electrical requirement
- End User Application & Environment
- Cost
- Time to Market

Thermal Performance is Primary!

T_I = Maximum junction temperature

T_A = Ambient temperature inside the chamber

Power = The amount of power, measured in watts produced by the device

Thermal Performance Solutions

- Exposed Die Attach Pad (DAP)
- Increase Substrate Layer Count
- Substrate Copper Plane Thickness
- Heat Sink or Slugs
- Substrate Filled Vias
- Thermal Balls
- Increase Package Size

Thermal						Theta JA (Deg C/W)				
Package	Ball/Lea d count	Pkg Size (mm)	Pad size (mil)	Die Size (mil)	Heatspreader /Heatsink	LF/Substrate Material	PCB Layer	0 (m/s)	1 (m/s)	2 (m/s)
QFP	80	14x20	240x240	100×100	-	Cu	4L	26.2	21.3	18.5
QFP	208	28x28	405x405	100×100	-	Cu	4L	37	35.9	34.1
QFP	208	28x28	405x405	400x400	Y	Cu	4L	15.5	13.4	12.2
LQFP	100	14x14	276x276	200x200	-	Cu	4L	39.7	37.7	35.4
LQFP	100	14x14	354x354	200x200	-	Cu	4L	29.9	27.3	25.3
TQFP	100	14x14	240x240	200x200	-	Cu	4L	37.9	34.6	32.8
TQFP	100	14x14	354x354	200x200	-	Cu	4L	32.5	30.2	28.2

Source: ASE

Thermal						Theta JA (Deg C/W)			
Package	Ball/Lead count	Pkg Size (mm)	Pad size (mil)	Die Size (mil)	Heat spreader/Heats ink	LF/Substrate Material	0 (m/s)	1 (m/s)	2 (m/s)
PBGA	313	35x35	395x395	350x350	-	2L	23.2	20.8	19
PBGA	313	35x35	395x395	350x350	-	4L	19	17.1	15.7
PBGA	569	40x40	486x486	450x450	-	2L	20.5	18.4	16.8
PBGA	569	40x40	486x486	450x450	-	4L	16.5	14.8	13.6
HSBGA	388	35x35	528x528	400x400	Y (36 thermal ball)	2L	16.6	14.7	13.5
HSBGA	388	35x35	528x528	400x400	Y (36 thermal ball)	4L	12.3	10.6	9.3
HSBGA	452	35x35	528x528	300x300	Y (100 thermal ball)	4L	12.8	11.1	9.9

Source: ASE

Electrical Performance

- Identifying Critical Signals
- Signal Integrity
- Substrate Plating Requirements
- Substrate or Lead Frame Connectivity

GPP Product

No Tie Bar

Subtractive

Product

Tie Bar

Physical Consideration

- Basic physical package attributes
- Cost considerations
 - Typically custom and tooling availability
- Tester and test socket availability
- PCB connectivity challenges

Package Connectivity

- Interconnects between die pads and lead frame leads/BGA ball locations
- Power and ground rings vs. down bonding to the package DAP
- Standard netlist formats reduces design cycle time

Manufacturing Consideration

- I/O density with respect to the die size
- Wire lengths
- Wire angles
- Wire loop profiles
- Die pad design
- Lead frame & substrate design features clearances

Max. Wire Length Forward Looping	Wire Diamete	
30mil(762um)≤WL≤130 mil(3302um)	18um(0.7mil)	
30mil(762um)≤WL≤140 mll(3556um)	20um(0.8mil)	

Single Substrate Design with Multi SDRAM and Flash Options

3 Packages cost (est. USD8.50); ASIC, SDRAM & Flash 1 package; VFBGA 10x10x0.9mm 144L MCM (est. USD4.00)

Single Substrate Design with Multi SDRAM and Flash Options

ASIC	SDRAM	Flash
VA0269	256MB	32MB
KA0268	64MB	64MB

4 in 1 Combo

Challenges:

- Thermal Performance
 - To meet the thermal requirement
- **Electrical Performance**
 - To meets the electrical performance and timing
- **Physical Consideration**
 - Fitting into real estate constraint of the system

Package at 260°C (warpage: +59.9 um)

Challenges:

- Package Connectivity
 - Side by side or stacked?
- 00000

- Manufacturing Consideration
 - Manufacturable in mass production

Summary

Working Together: IC / Package / PCB Co-Design Process

Keyasic

Keyasic

Thank you